Upper Bounds for Double Exponential Sums Along a Subsequence

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds for the Derivative of Exponential Sums

The equality sup p | p(a) | ‖p‖[a,b] = 2n2 b− a is shown, where the supremum is taken for all exponential sums p of the form p(t) = a0 + n

متن کامل

Explicit upper bounds for exponential sums over primes

We give explicit upper bounds for linear trigonometric sums over primes.

متن کامل

On Upper Bounds of Chalk and Hua for Exponential Sums

Let f be a polynomial of degree d with integer coefficients, p any prime, m any positive integer and S(f, pm) the exponential sum S(f, pm) = ∑pm x=1 epm(f(x)). We establish that if f is nonconstant when read (mod p), then |S(f, pm)| ≤ 4.41pm(1− 1 d . Let t = ordp(f ′), let α be a zero of the congruence p−tf ′(x) ≡ 0 (mod p) of multiplicity ν and let Sα(f, pm) be the sum S(f, pm) with x restrict...

متن کامل

Bounds for Certain Exponential Sums

where p is a prime power , χ mod p is a Dirichlet character, a, b, n are integers with n ≥ 2. The first sum was studied in connection with Waring’s problem and we have a classical result due to professor Hua [10]. The second sum has not been studied before as far as the authors know. We hope it can be used in the work of generalizing Waring’s problem. In [6], Davenport and Heilbronn showed that...

متن کامل

Bounds on Fewnomial Exponential Sums Over

We obtain a number of new bounds for exponential sums of the type S(χ, f) = ∑p−1 x=1 χ(x)ep(f(x)), with p a prime, f(x) = ∑r i=1 aix ki , ai, ki ∈ Z, 1 ≤ i ≤ r and χ a multiplicative character (mod p). The bounds refine earlier Mordell-type estimates and are particularly effective for polynomials in which a certain number of the ki have a large gcd with p − 1. For instance, if f(x) = ∑m i=1 aix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Uniform distribution theory

سال: 2017

ISSN: 2309-5377

DOI: 10.1515/udt-2017-0012